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Abstract—Recently, learning-based models have enhanced the 

performance of Single-Image Super-Resolution (SISR). However, 

applying SISR successively to each video frame leads to lack of 

temporal consistency. On the other hand, VSR models based on 

convolutional neural networks outperform traditional approaches 

in terms of image quality metrics such as Peak Signal to Noise 

Ratio (PSNR) and Structural SIMilarity (SSIM). While optimizing 

mean squared reconstruction error during training improves 

PSNR and SSIM, these metrics may not capture fine details in the 

image leading to misrepresentation of perceptual quality. We 

propose an Adaptive Frame Recurrent Video Super Resolution 

(AFRVSR) scheme that seeks to improve temporal consistency by 

utilizing information from multiple similar adjacent frames (both 

future LR frames and previous SR estimates), in addition to the 

current frame. Further, to improve the “naturality” of the 

reconstructed image while eliminating artifacts seen with 

traditional algorithms, we combine the output of the AFRVSR 

algorithm with a Super-Resolution Generative Adversarial 

Network (SRGAN). The proposed idea thus not only considers 

spatial information in the current frame but also temporal 

information in the adjacent frames thereby offering superior 

reconstruction fidelity. Once our implementation is complete, we 

plan to show results on publicly available datasets that 

demonstrate that the proposed algorithms surpass current state-

of-the-art performance in both accuracy and efficiency.  
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I. INTRODUCTION 

Traditional Video Super-Resolution (VSR) methods upscale 
based on a single degradation model (usually bicubic 
interpolation), followed by reconstruction. This is sub-optimal 
and adds computational complexity [1]. Further, the ability of 
mean square error, which these studies utilize to capture high 
texture details based on pixel-wise frame differences, is very 
limited causing the resulting video frames to be too smooth [2].  

Recently, learning-based models have enhanced the 
performance of Single-Image Super-Resolution (SISR). 
However, applying SISR independently to each video frame 
leads to lack of temporal consistency. While high-frequency 
details need to be reconstructed exclusively from spatial 
statistics in the case of SISR, temporal relationships inherent in 
videos can be exploited to improve reconstruction for VSR. It is 
therefore imperative to combine the information from as many 

low resolution (LR) frames as possible to reach the best video 
super-resolution results [5].  

VSR models based on Convolutional Neural Networks 
(CNNs) outperform traditional approaches in terms of widely 
used image reconstruction metrics such as Peak Signal to Noise 
Ratio (PSNR) and Structural SIMilarity (SSIM). The perceptual 
image quality of resulting super-resolved image is principally 
dependent on choice of a loss function, which is optimized 
during model training. Recent work is largely based on 
optimizing mean squared reconstruction error. Such loss 
improves PSNR and SSIM, however, these metrics may not 
capture fine details in the image leading to misrepresentation of 
perpetual quality [9]. 

II. PROPOSED IDEA 

A. Method 

Rather than applying super-resolution to each frame 
independently, our approach involves utilizing adjacent frame 
similarity to identify additional frames similar to the input frame 
that can be fed to the algorithm for reconstruction, along with 
the input frame. To this end, we train a network that utilizes 
optical flow-based methods to estimate future frames using 
similar adjacent frames.  

To mitigate the issue of lack of finer texture details when 
super-resolving at large upscaling factors which is seen with 
CNNs, our approach utilizes Generative Adversarial Networks 
(GANs). Per [6], we use adversarial loss along with content loss 
(which focuses on perceptual similarity instead of similarity in 
pixel space) to limit model “fantasy”, and thus improve the 
naturality associated with the reconstructed image using a 
generator-discriminator model [9]. The generator-discriminator 
architecture pushes the model to generate more realistic and 
appealing frames while eliminating artifacts seen with 
traditional algorithms. 

The novelty in our approach is that we have proposed an 
adaptive version of FRVSR, which combines information from 
multiple adjacent frames (both future LR images and previous 
SR estimates) along with the current frame, instead of just the 
last frame and the current frame as proposed in [5]. The 
proposed idea thus combines the virtues of the Adaptive Frame 
Recurrent Video Super Resolution (AFRVSR) technology with 
Super-Resolution Generative Adversarial Network (SRGAN) 
proposed in [6] to reconstruct high-definition videos with 
superior temporal consistency and fidelity. 
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Figure 1: Adjacent frame similarity 
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Figure 2: Network architecture 
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B. Implementation 

The proposed implementation consists of an Adaptive-
FRVSR and SRGAN. The implementation which is currently 
functional is Baseline-FRVSR and SRGAN. We have 
implemented FRVSR using the implementation from [7] as 
reference. The FRVSR implementation available at [7] lacks 
important elements such as a top-level flow that performs testing 
on a sample using the trained model and reports back 
performance metrics. Moreover, it lacks documentation in the 
form of code comments. We are thus re-writing most of the 
implementation. For our SRGAN implementation, we are 
utilizing the one available at [6].  

Note that the current Baseline-FRVSR implementation, as 
proposed in [5], utilizes the last SR estimate frame and the 
current LR frame for estimating the current SR frame. Our 
proposed Adaptive-FRVSR implementation  utilizes adjacent 
frames (future LR frames and previous SR estimates) in addition 
to the current frame to improve VSR performance. 

The code for the implementation is available at 
https://github.com/amanchadha/iSeeBetter. 
Samples are also available in the repository. 

C. Loss functions 

Our loss-functions are based on FRVSR and SRGAN with 
relevant modifications to utilize adjacent frames. 

For FRVSR, we use two loss terms to train our model, as 
show in Fig. 2. The loss Lsr is applied to the output of SRNet and 
is backpropagated through both SRNet and FNet: 
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Note that the value of k1 and l1 are the previous estimated 
SR frame and the next LR frame respectively. k2 and l2 are 
determined by an image similarity statistical measure such as 
SSIM. If the similarity between the adjacent frames is beyond a 
certain high threshold (say, 95%) threshold, we qualify these 
frames as usable. based on a. We expect image similarity to 
reduce as we go beyond a particular value of n in either the 
forward or backward direction in time. Our technique thus not 
only takes into account spatial information in the current frame 
but also temporal information in the adjacent frames thereby 
offering superior reconstruction fidelity. 

Since we do not have a ground truth optical flow for our 
video dataset, we calculate the spatial mean squared error on the 
warped LR input frames leading to the auxiliary loss term Lflow 
to aid FNet during training. 
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The values of k1 and k2 are obtained similarly as above. The 
total loss used for training is L = Lsr + Lflow. 

For SRGAN, we define our loss function based on [3] to be: 

( )

( )( )
( )

( )

( )1

     ,  

   

( )     ,  

   ,  

  ,  

D

G

est HR

t t

est

est HR

G t t

LR LR

t t

MSE I I

log D I

Loss t PercepLoss I I

TVLoss Iest IHR

MSE I I













−



− 

= + 

+ 

+ 
 

(3) 

( )  1- ( ) ( )
D D

D

HR est

D t tLoss t D I D I
  = +

 
(4) 

The total loss of a sample is the average of all frames. 
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Once we have achieved functional convergence, as a stretch 
goal for the project, we would like to improve the performance 
of the algorithm by profiling and optimizing the runtime of the 
algorithm. The end goal would be to make the algorithm run at 
real-time during playback, thereby enabling VSR on-the-fly. 
This would require us to be able to perform frame generation 
within a couple of milliseconds to subsume processing within 
the 16.67ms intervals between successive VSYNCs (for smooth 
60FPS playback).  

D. Next steps 

Planned work includes: (i) Adaptive-FRVSR 
implementation, (ii) training the current model for more 
iterations, (iii) data augmentation using other similar datasets,  
(iv) reporting performance on standard datasets to compare with 
currently available VSR techniques, (v) code refactoring, (vi) 
documentation in the form of code comments and (vii) 
establishing additional performance metrics. 

III. EXPERIMENTAL RESULTS 

A. Dataset 

To evaluate the proposed model, we used the Vimeo90K 
dataset collected in the TOFlow project of MIT CSAIL [8] 
which contains around 90,000 7-frame HR sequences with a 
fixed resolution, extracted from 39K video clips from 
Vimeo.com. When training our models, we generated the 
corresponding LR frame for each HR input frame by performing 
4x down-sampling. To extend our dataset further, we have also 
built a video-to-frames tool to collect more data from YouTube.  

B. Training platform 

To train the model, we used the Amazon EC2 P2.XLarge 
instance which provides 16 NVIDIA K80 GPUs, 64 vCPUs and 
732 GB of host memory. 

C. Results  

Note that the below results are with the baseline 
implementation of FRVSR and SRGAN. The baseline FRVSR 
scheme only looks at the prior SR estimate and the current LR 
frame, while the adaptive scheme utilizes multiple similar 
adjacent frames along with the current LR frame. 
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TABLE I.  TEMPORAL PROFILES  
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TABLE II.  COMPARISON OF TEMPORAL PROFILE PSNR FOR THE ABOVE 

EXAMPLE  

Model Temporal Profile PSNR (dB) 

SRGAN 22.44 

FRVSR 19.63 

iSeeBetter  

(using the baseline 

FRVSR scheme) 

23.56 

 

From the above results, we can see that the baseline 
implementation yields a 5% improvement over SRGAN. We 
expect to see bigger improvements once we implement the 
adaptive FRVSR scheme.  
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